Averaging principle for systems of RDEs with polynomial nonlinearities perturbed by multiplicative noise ∗

نویسنده

  • Sandra Cerrai
چکیده

We prove the validity of an averaging principle for a class of systems of slow-fast reactiondiffusion equations with the reaction terms in both equations having polynomial growth, perturbed by a noise of multiplicative type. The models we have in mind are the stochastic Fitzhugh-Nagumo equation arising in neurophysiology and the Ginzburg-Landau equation arising in statistical mechanics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Averaging Principle for Systems of Reaction-Diffusion Equations with Polynomial Nonlinearities Perturbed by Multiplicative Noise

We prove the validity of an averaging principle for a class of systems of slow-fast reaction-diffusion equations with the reaction terms in both equations having polynomial growth, perturbed by a noise of multiplicative type. The models we have in mind are the stochastic Fitzhugh– Nagumo equation arising in neurophysiology and the Ginzburg–Landau equation arising in statistical mechanics.

متن کامل

A basic identity for Kolmogorov operators in the space of continuous functions related to RDEs with multiplicative noise∗

We consider the Kolmogorov operator associated with a reaction-diffusion equation having polynomially growing reaction coefficient and perturbed by a noise of multiplicative type, in the Banach space E of continuous functions. By analyzing the smoothing properties of the associated transition semigroup, we prove a modification of the classical identité du carré des champs that applies to the pr...

متن کامل

Stochastic reaction - diffusion systems with multiplicative noise and non - Lipschitz reaction term

We study existence and uniqueness of a mild solution in the space of continuous functions and existence of an invariant measure for a class of reaction-diffusion systems on bounded domains of R , perturbed by a multiplicative noise. The reaction term is assumed to have polynomial growth and to be locally Lipschitz-continuous and monotone. The noise is white in space and time if d = 1 and colour...

متن کامل

Khasminskii type averaging principle for stochastic reaction - diffusion equations ∗ Sandra Cerrai Dip . di Matematica per le Decisioni Università di Firenze Via C . Lombroso 6 / 17 I - 50134 Firenze , Italy

We prove that an averaging principle holds for a general class of stochastic reactiondiffusion systems, having unbounded multiplicative noise, in any space dimension. We show that the classical Khasminskii approach for systems with a finite number of degrees of freedom can be extended to infinite dimensional systems.

متن کامل

Well-posedness and Regularity for Quasilinear Degenerate Parabolic-hyperbolic Spde

We study quasilinear degenerate parabolic-hyperbolic stochastic partial differential equations with general multiplicative noise within the framework of kinetic solutions. Our results are twofold: First, we establish new regularity results based on averaging techniques. Second, we prove the existence and uniqueness of solutions in a full L1 setting requiring no growth assumptions on the nonline...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011